materially$47204$ - определение. Что такое materially$47204$
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое materially$47204$ - определение

LOGICAL CONNECTIVE
Material equivalence; Iff; ↔; ⇔; Bi-implication; All and only; Materially equivalent; Precisely when; Only if; If, and only if; If & only if; Just in case (catachresis); ⟺; If and Only If

if and only if         
  • ''A'' is a proper subset of ''B''. A number is in ''A'' only if it is in ''B''; a number is in ''B'' if it is in ''A''.
  • ''C'' is a subset but not a proper subset of ''B''. A number is in ''B'' if and only if it is in ''C'', and a number is in ''C'' if and only if it is in ''B''.
used to introduce a condition which is necessary as well as sufficient.

Википедия

If and only if

In logic and related fields such as mathematics and philosophy, "if and only if" (shortened as "iff") is a biconditional logical connective between statements, where either both statements are true or both are false.

The connective is biconditional (a statement of material equivalence), and can be likened to the standard material conditional ("only if", equal to "if ... then") combined with its reverse ("if"); hence the name. The result is that the truth of either one of the connected statements requires the truth of the other (i.e. either both statements are true, or both are false), though it is controversial whether the connective thus defined is properly rendered by the English "if and only if"—with its pre-existing meaning. For example, P if and only if Q means that P is true whenever Q is true, and the only case in which P is true is if Q is also true, whereas in the case of P if Q, there could be other scenarios where P is true and Q is false.

In writing, phrases commonly used as alternatives to P "if and only if" Q include: Q is necessary and sufficient for P, for P it is necessary and sufficient that Q, P is equivalent (or materially equivalent) to Q (compare with material implication), P precisely if Q, P precisely (or exactly) when Q, P exactly in case Q, and P just in case Q. Some authors regard "iff" as unsuitable in formal writing; others consider it a "borderline case" and tolerate its use.

In logical formulae, logical symbols, such as {\displaystyle \leftrightarrow } and {\displaystyle \Leftrightarrow } , are used instead of these phrases; see § Notation below.